Corneal Dystrophy/Degeneration:
What Every Optometrist Should Know
John E. Blachowski, O.D., FCOVD
Associate Editor for Cataract and Refractive Surgery, Arizona
Email: jblachowski@arizonadoctor.com

Disclosure
- Presenter is on speakers panel of Alcon, Allergan, Abbott, Bausch + Lomb, Merck, STAAR Surgical, TearLab, WFS and Odyssey
- Past-President of the Optometric Council on Refractive Technology (OCR)
- OMSO Board Member
- Presenter has NO financial interest in any products mentioned
- Except he does have stock in a certain coffee company...

Corneal Dystrophies
- Group of corneal diseases that are genetically determined and have been traditionally classified with respect to the corneal layer affected
- Defined as a corneal opacity or alteration which is most often bilateral and progressive and centrally located
- Tend to be avascular and involve all the areas of the cornea
- New classification system describes old name; new name, defective gene, inheritance pattern, phenotype of disorder and typical complications
Anterior Dystrophies

Meesman's Dystrophy

- Autosomal dominantly
- Symptoms:
 - Foreign body sensation due to epithelial erosion
 - Decreased visual acuity is usually minimal
- Signs:
 - Meissner's disease: epithelial cysts that are most prominently seen in the central pellucid zone
 - Slowly progressive
 - Bilateral, symmetric
 - Develops in the first 5 or 6 years of life
- Treatment:
 - Superficial corneal debridement
 - PTK

Epithelial Basement Dystrophy (EBMD)

- Abnormal corneal epithelial regeneration and maturation
- Abnormal basement membrane
- Very common dystrophy
- Considered age-related
 - Prevalence increases with age
 - Occurs around age 50
- Late onset supports degeneration vs. dystrophy
EBMD

- 10-65% of patients are symptomatic
- Symptoms
 - Foreign body sensation
 - Watery, itchy eyes
 - Irritability
 - Allergies
 - Blurred vision
 - Dry eye
 - Intermittent blurry vision
 - Discomfort
 - Other common RKS

EBMD

- Appears as a map, dot or fingerprint
 - Chalky patches
 - Interepithelial microcysts
 - Tined lines within central 2/3 of cornea
 - Bilateral and asymmetric
 - Females > Males
 - Negative staining is a good indicator

EBMD

- Treatment of EBMD
 - Monitoring cornea for any RKS
 - Azithromycin oral drops every 6 hours for 6 weeks
 - Subconjunctival injection
 - Topical antibiotics
 - Topical steroids
 - Reducing contact lenses while active
 - Punctal plugs
 - Corneal bandage
 - Surgery may be needed
 - PTK
 - FDT
 - Monitor for changes in visual acuity or comfort
EBMD POST-PTK

![Image of EBMD POST-PTK](image1)

Bowman's Layer Dystrophies

- **Reis-Buckler**
 - Autosomal Dominant
 - Corneal surface is smooth

- **Thiel-Behnke**
 - Autosomal Dominant
 - Corneal sensation normal
 - May present with RCE's

Reis-Buckler

![Image of Reis-Buckler](image2)

Thiel-Behnke Dystrophy

![Image of Thiel-Behnke Dystrophy](image3)

Edward S. Harkness Eye Institute
Columbia University
Granular Dystrophy
(Greenough Type I)

- Discrete white granular opacities in central anterior corneal stroma
- Increasing number, density, size and depth in age
- RCE's are commonly associated with pain
- Subepithelial scarring/dense stromal deposits reduce visual acuity
- PKP if disease progresses
Granular Dystrophy

GRANULAR DYSTOPHY

GRANULAR DYSTOPHY

Macular Dystrophy (Grbaczowa Type II)
- Grayish opacities with indistinct edges in superficial stroma
- Over time:
 - Extends into deeper stromal layers
 - Intervening stroma becomes hazy
 - Visual acuity is decreased
 - Light sensitivity and pain
- Surgery is expected by 30-50 years old
Macular Dystrophy

Lattice Dystrophy (Type I)
- Clinically appears
 - Linear reticular branching deposits within the anterior stroma
 - Central cornea becomes opaque and tears decreasing the visual acuity
- Autosomal Dominant
- < 1 decade
- > 1 decade decrease VA
- RPE rare associated with lattice
- Surgical intervention recommended with decreased acuity
Lattice Dystrophy

- Central discoid opacification posterior to Bowman’s membrane in anterior stroma
- Opacities consist of:
 - Small needle-shaped refractive crystals
 - White
 - Polychromatic
 - May extend into deeper stroma avoiding epithelium
- Vision is relatively unaffected
- Associated with cholesteroloma

Central Crystalline Dystrophy of Schnyder

Schnyder’s Crystalline Dystrophy

Other Stromal Dystrophies

- Avellino
- Gelatinous Drop-Like
- Fleck
- Central Cloudy
- Posterior Amorphous
POSTERIOR MEMBRANE DYSTROPHIES

Posterior Polymorphous
- Autosomal dominant
- Teens to 20's
- Vesicles at Descemet's Endothelium
- Signs
 - Vesicle bands
 - Diffuse opacities
 - Iridal
 - Corneal steepening
 - Increase IOP

Posterior Polymorphous (PPMD)
- Vesicles are hallmark of PPMD
- Bilateral
- Trabecular meshwork can become covered with epithelial cells and basement membrane
- Synechiae can be present

Fuch's Dystrophy
- Autosomal dominant inheritance
- Bilateral / Asymmetry
- Late onset > 50 y.o.
- Females affected 3 times more than males
- 5,7 % develop edema
- Characterized
 - Corneal guttae
 - Excessive accumulation of abnormal endothelial cells
 - Appears in 30-50 years of life

10/22/13
Fuch's Dystrophy

- Characterized
 - Corneal Guttata
 - Small, visible "droplets" on corneal endothelium
 - Edema
 - Hypertrophy of AK
 - Impaired blood flow to endothelium

- Symptoms
 - Moderate guttata
 - May affect visual function
 - May induce mild to moderate edema
 - Halo around lights
 - Hazy vision
 - Severe guttata
 - Vision decreases
 - Possible bullous develops

Fuch's Dystrophy

- Treatment
 - Early stage of disease
 - Increased fluid flow
 - Hypotonic drops
 - BCL (if bullous present)
 - Education
 - Visual function is significantly compromised
 - Penetrating keratoplasty
 - DCSK or endothelial keratoplasty (DSK)
 - DMEK donor-lens endothelial keratoplasty (DMEK)
Fuch's Dystrophy

- DLEK
 - Recipient cornea is stripped of Descemet's membrane and endothelium
 - Transplantation of donor cornea through small incision
 - Results in:
 - Improves endothelial function, correct clarity and intraocular
 - Minimally affects refraction
 - Can provide rapid visual recovery
 - Maintains structural integrity of the cornea

Congenital Hereditary Endothelial Dystrophy (CHED)

- Rare congenital dystrophy
- First weeks to 6 months old
- Bilateral symmetric
- Non-inflammatory clouding
- Signs:
 - Opacification extending to limbus with clear zones
 - Thinning
 - No new/no extra tissue
 - No increase in IOP

Congenital Hereditary Endothelial Dystrophy

- Nystagmus is present
- VA can be as low as 20/200
- No new/no extra tissue
- No increase in IOP
- Diagnosis of exclusion
Congenital Hereditary Endothelium Dystrophy

Iridocorneal Endothelial Syndrome
ICE

- FOM
- Diagnosed 3rd to 5th Decade
- 3 Main features
 - Iris changes
 - Cornea swelling
 - Glaucoma
- Unknown etiology

ICE

- Abnormal endothelium
- Iris corneal adhesions
- 90-100% develop glaucoma
- Increased IOP
- Edema
- Iris
 - Mild to severe atrophy
 - Nodules may be present
 - Glaucome membroane on iris
- Condition can be relentless and difficult to treat
Corneal Degenerations

- Defined as a deterioration or change from a higher to a lower form, especially change of tissue to a lower or less functionally active
- Non-inherited
- Unilateral or bilateral
- Asymmetric
- Develop in later years
- Variable progression
- Systemic disease can be associated

Degenerations

- Arcus
- Sphairoidal degeneration
- Amyloid
- Limbal gridle of Vegi
- Band keratopathy
- Salzman’s nodular degeneration

Degenerations

- Coats white Ring
- Hassall-Henle bodies
- Crocodile lash green
- Senile furrow
- Delen
- Pterygeac
- Pterygium
Ectatic Disorders

Keratoconus

- Ectatic corneal dystrophy
- Bilateral with asymmetry
- Manifests in 20-30's
- Most likely a multigenic disease
 - Complex mode of inheritance
 - Environmental factors influence manifestation

Keratoconus

- Etiology
 - Increased enzyme activities (decreased levels of enzyme inhibitors)
 - Toxicity
 - Destruction of normal corneal matrix; results in thinning and scarring
Keratoconus

- Diagnoses
- Slit lamp findings
- Munzoff’s sign
- Central corneal thinning
- Fleckling
- Scarring at Bowman’s layer or anterior stroma
- Age is stable (vertical strand)
- Irregular astigmatism
- Keratoglobus (intrastromal with both contact glasses)
- Topographically
- Inferior stroming

Keratoconus

- Gestates for approximately 10-20 years and then stabilizes
- Severity is variable between patients
- Often asymmetric appearance
- Thinning can be extensive:
 - Resulting in rupture of Descemet’s membrane
 - This results in posterior stromal edema
 - Hydrops

Keratoconus

- Signs
 - Conjunctival hyperemia
 - Prominent central and inferior corneal edema
 - Gobbling
 - Self-limited in 6-8 weeks; endothelial cells regenerate at ruptured Descemet’s membrane

Keratoconus

- Hydrops
- Symptoms
 - Sudden decrease in best corrected vision
 - Foreign body sensation
 - Pain
- Signs
 - Conjunctival hyperemia
 - Prominent central and inferior corneal edema
 - Gobbling
 - Self-limited in 6-8 weeks; endothelial cells regenerate at ruptured Descemet’s membrane
Keratoconus

- Treatment
 - Hydration
 - Topical medications
 - Intraocular gas injection
 - Hyperopic LASIK
 - RGP lenses
 - Skeletal laser osteoplasty
 - Hyaluronic acid injection
 - Artificial corneal tissue replacement

Keratoconus Treatment Flow
The New Paradigm

- Disease Identification & Management
- Spectacle, Contacts, Custom Lenses
- Identification of Surgical Need
- Contact Lens intolerance or Risk of Scarring
- Work-Up, INTACS Surgery, 1-Day Post-Op
- 3 Month Post-Op
- Post-Op Management & Outcome Analysis
- Follow-Up
- Ongoing Follow-Up
- Intra-Corneal Implant (ICL)
- Long-Term Follow-Up
- Ongoing Management
- Intraocular lens implantation
- Cornal crosslinking
- Riboflavin 2% (CXL)
- Increase in corneal thickness
- Strengthen corneal
difference in corneal
- Riboflavin eye drops are applied to the cornea
- The riboflavin is activated by a UV-light

Corneal Crosslinking
Riboflavin & UV-A

- Increase in corneal rigidity
- G21 penetration rate
- Young’s modulus
- Increased G, G21 in human corneas

10/22/13
Corneal Crosslinking with Riboflavin: CXL

Corneal Crosslinking Clinical Applications
- Keratoconus/juvenile keratoconus
- Corneal stabilization
- LASIK
- PRK
- RLE
- Advanced Hybrid LASIK
- CRT/multikeraology
- Corneal ulcers
- Myopia control

Corneal Crosslinking Clinical Applications
- Intracorneal ring segments
- FDA approved for nearsightedness 1998
- FDA approved under IDE 2004
- Provide structural support to thinned peripheral cornea
- Flattens cone
- Pulls cone toward center of cornea
- Decreases irregular astigmatism
Pellucid Marginal Degeneration (PMD)
- Bilateral thinning of the inferior peripheral cornea
- Thinning occurs 1-2 mm above inferior limbus
- Separated by an area of unaffected cornea between limbus and thinning
- Hydrops may present in the thinner area
- Commonly seen in 2nd to 3rd decade
- Non-inherited
- M:F

PMD
- Subjective symptoms
 - Increased astigmatism
 - Unexplained decrease in visual acuity
- Affected area is clear of lipids or vascularization
- Corneal topography has distinct inferior steepening
 - Crab claw
 - Kissing domes
 - Beard and mustache

PMD
- Treatment
 - Glasses
 - Traditionally may be sufficient in PMD
 - Matching astigmatism
 - Contact lens
 - Challenging fits with increase astigmatism (ATL)
 - Asymmetrical astigmatism
 - Surgical intervention
 - PK
 - Inferior lamellar patch graft
Terrien's Marginal Degeneration

- Rare bilateral asymmetric disease
- Unknown etiology
- Superior peripheral cornea thinning
- Lipid deposition
- Vascularization
- Opacification
- Can perforate
- No changes to epithelium

Terrien's Marginal Degeneration

- Occurs at any age or sex
- Although more typical in middle-aged males
- No signs of inflammation
- No injection of conjunctive
- No A/C chamber reaction
- Increase in regular and irregular astigmatism
- Asymptomatic
- Change in vision may be a prompt

Terrien's Degeneration

Terrien's Marginal Degeneration

- Circumferential yellow demarcation
- Lipid and fine pannus
- Often resembles a pterygium
- Perforation is rare, without trauma
- Hydrops may occur
- Topography
 - Corneal flattening at juncture of fornix
 - Strengthening 90 degrees from flat area
 - Spherical and regular central area
Terrien's Marginal Degeneration

- Management
 - Asymptomatic, thus education and supportive
 - Initiated red eyes on occasion
 - Lesional
 - Early reductive treatments
 - Spectacles
 - Contact lenses
 - IOP
 - PTK
 - Surgical intervention includes PK

Mooren's Ulcer

- Painful relentless chronic ulcerative keratitis
- Initially starts peripherally and progresses circumferentially and centrally
- Idiopathic

Mooren's Ulcer

- Divided into 3 distinct variations
 - Unilateral Mooren's
 - Presents slowly in elderly
 - Bilateral Aggressive Mooren's
 - Younger patients
 - Circumferentially progresses towards central ulceration
 - Bilateral Incontinent Mooren's
 - Middle-aged patients
 - Progressive peripheral guttation
 - Blindly
 - Little inflammation
Mooren's Ulcer

- Pathophysiological mechanism unknown
 - Possibly autoimmune
- Presents
 - Redness
 - Irritation
 - Photophobia
 - Pain
 - Often worse than inflammation indicates
 - Visual disturbance or irregular astigmatism
 - Acute

Mooren's Ulcer

- Treatment
 - Steroids:
 - Prednisolone
 - Cycloplegia
 - Topical antibiotics:
 - 4th generation fluoroquinolones
 - Oral steroids
 - Conjunctival resection
 - Immunosuppressive therapy

Let's Put It All Together

Case 3

- 63 y.o. male
- Presents to office for general eye exam
 - Irritated
 - Repeatedly denied
 - Last eye exam was NEVER
- "I hate Dr's you are all crazy...I am here because I need my drivers license!"
Case 1
- Ocular Marshmallowitis
- Arcus Senilis
- Limbal girdle of Voigt
- Terrien's Marginal Degeneration

Case 2
- 53 y.o. nursery school teacher
- "I noticed a white spot in my eye"
- The left eye is worse, redness & tearing
- No diabetes with glucose
- NIDDM & HTN
- UCVA 20/25 OU

Case 3
- 57 y.o. Wall-Mart greeter
- "I want LASIK surgery"
- UCVA
 - OD 20/30
 - OS 20/50
 - OD 0.30 x 60
 - OS 0.25 x 60
- No corneal staining
- Hx of pain eye from time to time in AM
Case 3
- Keratoconus
- EBMD
- Hornitis

Who cares? Can't we just be done with this lecture already seriously enough of these ridiculous questions." Bored with this!"

Case 4
- 37 y.o. professional roller-blader
- "My eyes are irritated, red and I don't see as well as I used to"
- My girlfriend is a pre-school teacher
- I use Visine!

Case 4
- Crocodile
- Shagreen
- Pterygium
- Macular
- Dystrophy
- Phlegm
- More snot!

Case 5
- 39 y.o. male
- "Constant dryness of eyes in my nose and in my mouth"
- "I have really dry eyes and when I apply Vaseline to this make them better"
- "I must want to reiterate this are increased tear production and is ABAE"
- "My eye hurts!"
Case 5

- RCVA
- 26 years
- 26 Aug
- Pachymetry
- 50 um
- 70 cells
- Mild staining noted on the cornea
- Deep striae more centrally located
- Strong aerosol smell

Case 5

- Arcus Inversus
- Lattice Degeneration
- Hair Net Dystrophy
- Macular Dystrophy
- Punishment for bringing ABBA back!

Case 6

- 58 y.o. feline exerciser
- "I have not had an exam in a few years"
- Hx of taking drop with "yellow" top
- Wants a new Rx
 - VA: 20/40
 - IOP: 23 mm Hg

Case 6

- PPMD
- WB
- SUY
- CHED
- LOST
- OAT
- GDx
- ICE
 - Too cold, Too cold
Thank you